Synthesis and characterisation of a *semipseudocloso* carbaruthenaborane. Molecular structure of $[1-(PhCC)-2-Ph-3-(cym)-3,1,2-semipseudocloso-RuC_2B_9H_9]$ (cym = *p*-cymene)*

Rhodri Ll. Thomas and Alan J. Welch

Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, UK

The *closo* carbaborane 1-(PhCC)-2-Ph-1,2-C₂B₁₀H₁₀ was readily decapitated to afford either [7-(PhCC)-8-Ph-7,8-C₂B₉H₁₀]⁻ or [7-(PhCC)-8-Ph-7,8-C₂B₉H₉]^{2⁻}. Reaction of the thallium(t) salt of the latter with [{RuCl₂(cym)}₂] (cym = *p*-cymene) yielded the unique *semipseudocloso* carbaruthenaborane [1-(PhCC)-2-Ph-3-(cym)-3,1,2-RuC₂B₉H₉] characterised by multinuclear NMR spectroscopy (weighted average ¹¹B chemical shift +2.41 ppm) and by single-crystal X-ray diffraction [C(1)-C(2) 2.184(7), Ru(3) ··· B(6) 3.166(6) Å]. The *semipseudocloso* shape thus appears to lie between *closo* and *pseudocloso*, although somewhat closer to the latter. Confirmation of the structure strongly supports the idea of a continuum of cluster structures from *closo* to *pseudocloso*, the position of a molecule on which may be controlled by steric effects.

We have recently demonstrated that intramolecular steric crowding in heteroboranes can lead to unusual molecular structures. Thus, whilst the conformations of the phenyl rings, θ_{Ph} (the modulus of the average C_{cage} - C_{ph} - C_{ph} torsion angle) in 1,2-Ph₂-1,2-*closo*- $C_2B_{10}H_{10}^2$ and [7,8-Ph₂-7,8-*nido*- $C_2B_9H_{10}$]⁻³ are typically low, allowing the expected *closo* geometries to be observed, θ_{Ph} increases substantially when [7,8-Ph₂-7,8-nido- $C_2B_9H_9]^{2-}$ is bound to conical transition-metal-containing fragments such as { $(\eta^5-L)M$ } (L = C₅Me₅, M = Rh⁴ or Ir,⁵ L = C₉Me₇, M = Rh⁶), { $(\eta^6-L)M$ } [L = C₆H₆, MeC₆H₄Prⁱ-4 (*p*-cymene, cym) or C₆Me₆, M = Ru⁵] or { $(\kappa^3-L)M$ } (L = 1,4,7-trithiacyclononane, $M = Ru^7$). At high θ_{Ph} values the ortho-H · · · ortho-H crowding thereby generated prises apart the cage carbon atoms (typically to ca. 2.5 Å) and transforms the otherwise closo carbametallaborane I into a pseudocloso carbametallaborane II, in which the $M(3)C(1)B(\hat{6})C(2)$ face is essentially square. Continuation of the deformation that leads from closo to pseudocloso ultimately recloses the M(3)C(1)B(6)C(2) face by making the M(3)-B(6) connectivity, generating a hypercloso species III from closo I by a single diamond-squarediamond step.

The closo to pseudocloso deformation appears to be accompanied by a movement to high frequency of the weighted average ¹¹B NMR chemical shift, $\langle \delta(^{11}B) \rangle$, of the order of *ca.* 15 ppm, and, from individual boron resonance assignments via IGLO calculations⁵ (IGLO = individual gauge for localised orbitals) and ¹¹B-¹¹B correlation spectroscopy (COSY) experiments⁶ we were able to show that *all* boron resonances suffer a high-frequency shift, albeit to varying degrees. At the same time, determination of the molecular structure of the less crowded analogous species [1-Ph-2-Me-3-(cym)-3,1,2-RuC₂B₉H₉] and analysis of its ¹¹B NMR shifts both reveal the beginnings of a deformation from closo to pseudocloso, possibly suggesting that a structural continuum might exist between these forms.8

In the present contribution we confirm the existence of such a continuum by the synthesis and spectroscopic and crystallographic characterisation of [1-(PhCC)-2-Ph-3-(cym)-3,1,2-RuC₂B₉H₉]. This species displays a novel *semipseudocloso* polyhedral structure **IV**, essentially intermediate between *closo* and *pseudocloso*.

III hypercloso

IV semipseudocloso

Experimental

Synthesis and spectroscopy

All reactions were carried out under an atmosphere of dry, oxygen-free nitrogen using standard Schlenk-line techniques, with some subsequent manipulations in the open laboratory. All solvents were dried and distilled under N₂ immediately prior to use. The NMR spectra were recorded at 298 K on Bruker AC 200 (¹H) and DPX 400 (¹¹B) spectrometers, chemical shifts being reported relative to external SiMe₄ (¹H) or BF₃·OEt₂ (¹¹B). Infrared spectra were recorded from CH₂Cl₂ solutions, referenced against the same solvent or, where indicated, as a KBr disc, on a Nicolet Impact 400 spectrophotometer. Microanalyses were performed by the Department of Applied Chemical and Physical Sciences, Napier University. The starting materials 1-(PhCC)-2-Ph-1,2-*closo*-C₂B₁₀H₁₀⁹ and [{RuCl₂-(cym)}₂]¹⁰ were prepared by literature methods or slight variants thereof.

Tl₂[7-(PhCC)-8-Ph-7,8-C₂B₉H₉]. The carbaborane 1-(PhCC)-

^{*} Steric effects in heteroboranes. Part 15.¹

2-Ph-1,2-C₂B₁₀H₁₀ (0.40 g, 1.25 mmol) was dissolved in ethanol (50 cm³) and KOH (0.45 g, 8 mmol) was added. The solution was stirred for 30 min and then heated to reflux for 18 h. Solvent was removed under reduced pressure from the resultant pale yellow solution, to yield an oily solid. Addition of water (20 cm³) gave a pale yellow suspension that was filtered through Celite[®]. Addition of a solution of thallium(1) acetate (2.10 g, 8 mmol) in water (5 cm³) caused an immediate precipitation of a pale yellow solid. This was filtered off, and then washed with ethanol (2 × 5 cm³) and diethyl ether (2 × 5 cm³) followed by drying *in vacuo* to afford the product as a yellow solid. Yield 0.21 g, 24% (Found: C, 25.9; H, 2.3. Calc. for C₁₆H₁₉B₉Tl₂: C, 26.8; H, 2.65%). IR (KBr): ν_{max} at 2525 cm⁻¹ (B–H).

[NEt₃H][7-(PhCC)-8-Ph-7,8-C₂B₉H₁₀]. To a solution of the carbaborane 1-(PhCC)-2-Ph-1,2- $C_2B_{10}H_{10}$ (1.80 g, 8.1 mmol) in ethanol (30 cm³) was added KOH (0.92 g, 16.3 mmol). The solution was stirred for 30 min and then heated to reflux for 72 h. After cooling, saturation with CO₂ for 30 min gave a white precipitate which was filtered off. The solvent was removed from the filtrate under reduced pressure to afford an oily solid. To this was added water (20 cm³), followed by a solution of triethylamine hydrochloride (2.33 g, 17 mmol) in water (5 cm³). The resultant fine suspension was extracted into CH_2Cl_2 (3 × 25) cm³) and dried over potassium carbonate. Filtration followed by removal of CH₂Cl₂ under reduced pressure gave a waxy white solid, that was recrystallised from PrⁱOH to yield the product [NEt₃H][7-(PhCC)-8-Ph-7,8-C₂B₉H₁₀] as a white powder. Yield 2.55 g, 76% (Found: C, 64.45; H, 8.85; N, 3.2. Calc. for C₂₂H₃₆B₉N: C, 64.2; H, 8.75; N, 3.4%). NMR $(CD_3)_2SO: {}^{1}H, \delta 7.60-7.50 \text{ (m, 2 H, } C_6H_5), 7.40-7.20 \text{ (m, 6 H, }$ C_6H_5), 7.00–6.90 (m, 2 H, C_6H_5), 3.20 (q, 6 H, ${}^3J_{HH} = 8$, NC H_2 Me), 1.35 (t, 9 H, ${}^{3}J_{HH} = 8$ Hz, CH₃) and -2.3 (br s, 1 H, endo-BH); ¹¹B-{¹H}, δ -4.34 (2B), -8.09 (1B), -13.70 (2B), -16.00 (1B), -16.82 (1B), -29.53 (1B) and -32.03 (1B).

[1-(PhCC)-2-Ph-3-(cym)-3,1,2-RuC₂B₉H₉] 2. A solution of $[{RuCl_2(cym)}_2]$ (0.10 g, 0.18 mmol) in CH₂Cl₂ (20 cm³) was cooled to $-196\ ^\circ C.$ To the frozen mass was added $Tl_2[7\text{-}$ (PhCC)-8-Ph-7,8-C₂B₉H₉] (0.20 g, 0.3 mmol) and the mixture warmed to room temperature with stirring over 3 h. The resultant suspension was filtered through Celite®, affording an orange-red solution. Solvent was partially removed under reduced pressure, leaving 2-3 cm³ of solution. Preparative TLC on SiO₂ using an eluent mixture [light petroleum (b.p. 40-60 °C)-CH₂Cl₂ (3:2)] gave one major mobile band, $R_{\rm f}$ = 0.4. This was isolated and recrystallised from CH₂Cl₂light petroleum at -30 °C to give orange, diffractometer-quality crystals of 1-(PhCC)-2-Ph-3-(cym)-3,1,2-RuC₂B₉H₉ 2. Yield 40 mg, 24% (Found: C, 57.5; H, 5.95. Calc. for C₂₆H₃₃B₉Ru: C, 57.45; H, 6.05%). IR (CH₂Cl₂): v_{max} at 2580 cm⁻¹ (B–H). NMR (CDCl₃): ¹H, δ 7.60–7.10 (m, 10 H, C₆H₅), 5.85–5.25 (m, 4 H, $MeC_{6}H_{4}CHMe_{2}$), 2.85 (spt, 1 H, ${}^{3}J_{HH}$ 7, $MeC_{6}H_{4}CHMe_{2}$), 1.90 (s, 3 H, $MeC_{6}H_{4}CHMe_{2}$) and 1.20 (d, 6 H, ${}^{3}J_{HH}$ 7 Hz, $MeC_{6}H_{4}$ -CHMe₂); ¹¹B-{¹H}, δ 21.89 (1B), 11.21 (1B), 4.95 (2B), -1.41 (4B) and -15.71 (1B).

Crystallography

Data for compound **2** were collected on a Siemens P4 diffractometer, using graphite-monochromated Mo-K α X-radiation ($\lambda = 0.710$ 69 Å). The unit-cell parameters were determined by the least-squares refinement of 31 reflections using XSCANS,¹¹ followed by a fractional index search. Crystallographic data and details of data collection and structure refinement are given in Table 1. Decay was monitored by regular measurements of the intensities of three high-intensity reflections, but was found not to be significant. Data were corrected for absorption effects by the use of ψ scans.¹² The structure was solved without difficulty by means of a Patterson map (Ru) followed by iterative least-squares refinement/Fourier-difference syntheses (all other non-H atoms).¹³ Hydrogen atoms were placed in calculated positions, riding on the atom to which they are bound. After isotropic convergence, non-hydrogen atoms were allowed anisotropic thermal motion; $U_{\rm H}$ was set to 1.2 times the equivalent isotropic thermal parameter of the attached heavy atom (1.5 times $U_{\rm eq}$ for methyl groups). Towards the end of the refinement process data were weighted according to $w^{-1} = [\sigma^2(F_o^2) + (g_1P)^2 + (g_2P)]$ where $P = [\max(F_o^2 \text{ or } 0) + 2F_c^2]/3$ and g_1 , g_2 are variables. The structure was refined to convergence by full-matrix least-squares refinement (on F^2). Geometrical calculations and molecular drawings were performed using SHELXTL.¹³ Scattering factors for C, H, B and Ru were those inlaid in the programs.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/346.

Results and Discussion

The carbaborane 1-(PhCC)-2-Ph-1,2-closo-C2B10H10 is decapitated by KOH in refluxing EtOH to afford either the dianionic species $[7-(PhCC)-8-Ph-7,8-nido-C_2B_9H_9]^{2-1}$ if >6 equivalents of KOH are used, or the partially protonated product [7-(PhCC)-8-Ph-7,8-*nido*-C₂B₉H₁₀]⁻ if only 2 equivalents of KOH are employed. The dianion is obtained in only modest yield, but is conveniently isolated as its Tl⁺ salt, a pale yellow solid which is a suitable starting point for the synthesis of transition-metal compounds of 1. The protonated product is afforded in good yield and may be characterised as alkylammonium salts soluble in halogenated organic solvents. The ¹¹B-{¹H} NMR spectrum of the [NEt₃H]⁺ salt confirms its *nido* character and asymmetry. Although the ¹¹B spectrum reveals that each boron atom carries an exo terminal H atom, no additional coupling, or even broadening, of any of the signals is apparent due to the tenth cage H atom.

The reaction of Tl₂[7-(PhCC)-8-Ph-7,8-*nido*- $C_2B_9H_9$] with [{RuCl₂(cym)}₂] in CH₂Cl₂ followed by work-up involving TLC affords the orange carbametallaborane [1-(PhCC)-2-Ph-3-(cym)-3,1,2-RuC₂B₉H₉] **2** in modest yield. Proton NMR spectroscopic data are consistent with one cym ligand to two Ph groups. The ¹¹B-{¹H} NMR spectrum reveals five resonances with relative integrals 1:1:2:4:1 (high to low frequency), the peaks of integral 2 and 4 being unresolved coincidences at 128.4 MHz.

In recent papers⁴⁻⁷ we have noted that *pseudocloso* carbametallaboranes II are characterised by a weighted average ¹¹B NMR chemical shift, $\langle \delta(^{11}B) \rangle$, of the order of *ca.* 15 ppm higher in frequency than those of comparable closo carbametallaboranes I. Thus, for the previously reported species [3- $\begin{array}{l} (cym) -3, 1, 2 \ closo-RuC_2B_9H_{11}]^8 \ \text{and} \ [1-Ph-3-(cym) -3, 1, 2 \ closo-RuC_2B_9H_{10}]^8 \ \langle \delta(^{11}B) \rangle \ is \ -9.58 \ and \ -8.04 \ ppm, \ respectively, \end{array}$ whilst for [1,2-Ph₂-3-(cym)-3,1,2-pseudocloso-RuC₂B₉H₉]⁵ $\langle \delta(^{11}B) \rangle$ is +5.58 ppm. Replacement of a phenyl substituent on a carbaborane by a phenylethynyl substituent could reasonably be expected to result in an average increased shielding of the boron nuclei by *ca.* 1 ppm, comparing $\langle \delta(^{11}B) \rangle$ for 1,2-Ph₂-1,2- $C_2B_{10}H_{10}$ (-7.64 ppm) with that for 1-PhCC-2-Ph-1,2- $C_2B_{10}H_{10}$ (-8.70 ppm). On this basis, were compound 2 to have a full *pseudocloso* structure, $\langle \delta(^{11}B) \rangle$ would be anticipated to be *ca*. +4 to +5 ppm. That observed is only +2.41 ppm, a value clearly too high for a *closo* carbametallaborane and rather low for a pseudocloso one, but reasonable if an intermediate structure was adopted.

Confirmation of such an intermediate, *semipseudocloso*, structure for compound **2** was derived from crystallographic

 Table 1
 Crystallographic data and details of data collection and structure refinement for compound 2

Formula M	C ₂₆ H ₃₃ B ₉ Ru 543.88
Crystal size/mm	$0.20 \times 0.25 \times 0.40$
System	Orthorhombic
Space group	Phca
a/Å	12 8309(12)
b/Å	18 1447(11)
c/Å	22.961(2)
$I/\!\!/ Å^3$	5345 5(8)
Z	8
$D/g \text{ cm}^{-3}$	1 352
$\mu(Mo-K\alpha)/mm^{-1}$	0.601
F(000)	2224
θ_{exist}	8–11
$\theta_{data approx}/^{\circ}$	1.77-25.01
hk/Ranges	-1 to $+21$, -1 to $+15$, -1 to $+27$
Data measured	5784
Unique data	4707
Data observed $[I \ge 2\sigma(I)]$	2690
<i>g</i> ₁	0.467
<u>g</u>	0.0
\hat{R} (all data)	0.0916
R (observed data)	0.0411
$WR(F^2)$	0.1077
S	1.046
Variables	325
$\begin{array}{c} Maximum, \ minimum \ residues / \\ e \ {\mbox{${\rm \AA}^{-3}$}} \end{array}$	0.255, -0.313

Fig. 1 Perspective view of a single molecule of compound **2** (30% thermal ellipsoids except for hydrogen atoms which have an artificial radius of 0.1 Å for clarity). The phenyl rings are numbered cyclically [C(13)-C(18), C(21)-C(26) and C(31)-C(36)]. Cage and phenyl hydrogen atoms carry the same number as the atom to which they are attached

study. Fig. 1 views a single molecule and demonstrates the atomic numbering scheme adopted, whilst Table 2 presents selected molecular parameters. It is immediately apparent that the C(1)–C(2) connectivity in **2**, 2.184(7) Å, is substantially extended relative to that in 1-PhCC-2-Ph-1,2-C₂B₁₀H₁₀,¹⁴ 1.710(2) Å, and to that in the related *closo* carbaruthenaboranes $[3-C_6H_6-3,1,2-RuC_2B_9H_{11}]$,¹⁵ 1.626(4) Å, $[3-C_6Me_6-3,1,2-RuC_2-B_9H_{11}]$,¹⁶ 1.657(10) Å, $[1-Ph-3-(mes)-3,1,2-RuC_2B_9H_{10}]$ (mes = mesitylene, $C_6H_3Me_3-1,3,5$),⁸ 1.656(6) Å and even [1-Ph-2-Me-3-(cym)-3,1,2-RuC_2B_9H_9],⁸ 1.702(10) and 1.754(11) Å where a sterically driven incipient C(1)–C(2) lengthening has been noted. At the same time, C(1)-C(2) in **2** is significantly less than that in the full *pseudocloso* carbaruthenaboranes [1,2-Ph₂-3-(cym)-3,1,2-RuC_2B_9H_9] and [1,2-Ph₂-3-C_6H_6-3,1,2-RuC_2B_9H_9], 2.453(5) and 2.485(8) Å respectively.⁵

Fig. 2 Geometrical details (Å and °) in the open face of the *semipseudo-closo* compound **2**

Fig. 3 Plot of C(1)–C(2) distance versus M(3)–B(6) distance in compound 2 and typical closo (enclosed within square), pseudocloso (ellipse) and hypercloso (rectangle) 12-vertex carbametallaboranes: closo species, $[3-(C_6H_6)-3,1,2-RuC_2B_9H_{11}]$, 15 $[3-(C_6Me_6)-3,1,2-RuC_2B_9H_{11}]$, 16 $[1-Ph-3-(mes)-3,1,2-RuC_2B_9H_{11}]$, 17 $[3-(C_6Me_6)-3,1,2-RuC_2B_9H_{11}]$, 17 $[3-(C_5Me_5)-3,1,2-RuC_2B_9H_{11}]$, 17 $[3-(C_5Me_5)-3,1,2-RuC_2B_9H_{21}]$, 18 $[3-(C_5Me_5)-3,1,2-RuC_2B_9H_{21}]$, 18 $[3-(C_5Me_5)-3,1,2-RuC_2B_9H_{21}]$, 18 $[3-(C_5Me_5)-3,1,2-RuC_2B_9H_{21}]$, 19 $[3-(C_5Me_5)-3,1,2-RuC_2B_9H_{21}]$, 19 $[3-(C_5Me_5)-3,1,2-RuC_2B_9H_{21}]$, 19 $[3-(C_5Me_5)-3,1,2-RuC_2B_9H_{21}]$, 19 $[3-(C_5Me_5)-3,1,2-RuC_2B_9H_{22}]$,

In pseudocloso compounds a nearly square M(3)C(1)B(6)-C(2) face is generated, and the $M(3) \cdots B(6)$ distance is reduced from typically 3.5 Å in closo 12-vertex carbametallaboranes to <3 Å. In **2** Ru(3) \cdots B(6) is 3.166(6) Å. Overall the M(3)C(1)B(6)C(2) unit, which is sketched in Fig. 2, appears geometrically to have been distorted towards square whilst retaining definite diamond character. pseudocloso Carbametallaboranes prepared so far all have 1,2-Ph2-3-L-3,1,2-MC₂B₄ skeletons, in which the steric demand of the metalbonded ligand L has forced the cage phenyl substituents to adopt high θ_{Ph} values and so push against each other, breaking the C(1)–C(2) connectivity. In **2** θ_{Ph} is similarly high, 66.8(7)°, but now the cage-bound Ph group pushes against the π -electron density in the $C(11) \equiv C(12)$ ethynyl group. This presumably results in rather less steric crowding than between two high θ_{Ph} phenyl groups and limits the structural deformation from *closo* to semipseudocloso.

Fig. 3 plots C(1)-C(2) distance versus M(3)-B(6) distance for compound **2** and typical 12-vertex *closo*, *pseudocloso* and *hypercloso* carbametallaboranes. Data for the last three are Table 2 Selected interatomic distances (Å) and interbond angles (°) for compound 2

C(1)-C(11)	1.436(7)	C(1)–B(5)	1.644(7)	B(4)-B(12)	1.806(8)	B(4)–B(8)	1.811(9)
C(1)-B(4)	1.681(7)	C(1) - B(6)	1.734(8)	B(4) - B(5)	1.816(8)	B(5) - B(10)	1.762(9)
C(1)-Ru(3)	2.136(5)	C(1) - C(2)	2.184(7)	B(5) - B(12)	1.769(9)	B(5)-B(6)	1.799(9)
C(2) - C(21)	1.500(7)	C(2)-B(11)	1.646(7)	B(6) - B(11)	1.780(8)	B(6) - B(10)	1.821(8)
C(2)-B(7)	1.667(7)	C(2) - B(6)	1.725(7)	B(8)-B(9)	1.785(8)	B(8) - B(7)	1.797(8)
C(2) - Ru(3)	2.169(5)	Ru(3) - B(4)	2.194(5)	B(8) - B(12)	1.807(9)	B(9) - B(12)	1.755(9)
Ru(3) - B(7)	2.208(5)	Ru(3)-B(8)	2.214(6)	B(9) - B(10)	1.759(9)	B(9) - B(11)	1.765(8)
Ru(3)-C(33)	2.238(5)	Ru(3)-C(35)	2.243(5)	B(9) - B(7)	1.800(8)	B(10) - B(11)	1.746(9)
Ru(3) - C(36)	2.263(5)	Ru(3) - C(34)	2.270(5)	B(10) - B(12)	1.764(9)	B(11) - B(7)	1.810(8)
Ru(3)-C(32)	2.277(5)	Ru(3)-C(31)	2.322(5)	C(11) - C(12)	1.179(7)	C(12) - C(13)	1.441(7)
				- () - ()			(-)
C(11)-C(1)-B(5)	118.0(4)	C(11)-C(1)-B(4)	129.0(5)	C(2)-B(6)-B(11)	56.0(3)	C(1)-B(6)-B(5)	55.4(3)
B(5)-C(1)-B(4)	66.2(3)	C(11) - C(1) - B(6)	112.3(4)	B(11) - B(6) - B(10)	58.0(3)	B(5) - B(6) - B(10)	58.2(3)
B(5)-C(1)-B(6)	64.3(3)	C(11)-C(1)-Ru(3)	114.4(3)	B(9)-B(8)-B(7)	60.3(3)	B(9)-B(8)-B(12)	58.5(4)
B(4)-C(1)-Ru(3)	69.0(3)	B(6)-C(1)-Ru(3)	109.3(3)	B(12)-B(8)-B(4)	59.9(3)	B(7)-B(8)-Ru(3)	65.8(3)
C(11)-C(1)-C(2)	121.5(4)	B(6)-C(1)-C(2)	50.6(3)	B(4)-B(8)-Ru(3)	65.2(2)	B(12)-B(9)-B(10)	60.2(4)
Ru(3)-C(1)-C(2)	60.3(2)	C(21)-C(2)-B(11)	119.1(4)	B(10)-B(9)-B(11)	59.4(3)	B(12)-B(9)-B(8)	61.4(4)
C(21)-C(2)-B(7)	126.7(4)	B(11)-C(2)-B(7)	66.2(3)	B(11)-B(9)-B(7)	61.0(3)	B(8)-B(9)-B(7)	60.2(3)
C(21)-C(2)-B(6)	115.5(4)	B(11)-C(2)-B(6)	63.7(3)	B(11)-B(10)-B(9)	60.5(4)	B(9)-B(10)-B(12)	59.8(4)
C(21)-C(2)-Ru(3)	113.7(3)	B(7)–C(2)–Ru(3)	68.8(3)	B(5)-B(10)-B(12)	60.2(3)	B(11)-B(10)-B(6)	59.8(3)
B(6)-C(2)-Ru(3)	108.2(3)	C(21)-C(2)-C(1)	123.9(4)	B(5)-B(10)-B(6)	60.3(3)	B(10)-B(11)-B(9)	60.1(4)
B(6)-C(2)-C(1)	51.0(3)	Ru(3)-C(2)-C(1)	58.8(2)	C(2)-B(11)-B(6)	60.3(3)	B(10)-B(11)-B(6)	62.2(3)
C(1)-Ru(3)-C(2)	61.0(2)	C(1)-Ru(3)-B(4)	45.6(2)	C(2)-B(11)-B(7)	57.5(3)	B(9)-B(11)-B(7)	60.4(3)
C(2)-Ru(3)-B(7)	44.8(2)	B(4)-Ru(3)-B(8)	48.5(2)	B(8)-B(7)-B(9)	59.5(3)	C(2)–B(7)–B(11)	56.3(3)
B(7)-Ru(3)-B(8)	48.0(2)	C(35)-Ru(3)-C(36)	35.8(2)	B(9)–B(7)–B(11)	58.6(3)	C(2)-B(7)-Ru(3)	66.4(2)
C(33)-Ru(3)-C(34)	36.5(2)	C(35)-Ru(3)-C(34)	36.4(2)	B(8)–B(7)–Ru(3)	66.2(3)	B(9)-B(12)-B(10)	60.0(4)
C(33)-Ru(3)-C(32)	35.8(2)	C(36)-Ru(3)-C(31)	36.0(2)	B(10)-B(12)-B(5)	59.8(4)	B(5)-B(12)-B(4)	61.1(3)
C(32)-Ru(3)-C(31)	35.7(2)	B(12)-B(4)-B(8)	60.0(3)	B(9)-B(12)-B(8)	60.1(3)	B(4)-B(12)-B(8)	60.2(3)
C(1)-B(4)-B(5)	55.9(3)	B(12)-B(4)-B(5)	58.5(3)	C(12)-C(11)-C(1)	174.1(6)	C(11)-C(12)-C(13)	176.3(6)
C(1)-B(4)-Ru(3)	65.3(2)	B(8)-B(4)-Ru(3)	66.3(3)	C(14)-C(13)-C(17)	117.8(5)	C(14)-C(13)-C(12)	119.7(5)
B(10)-B(5)-B(12)	59.9(3)	C(1)-B(5)-B(6)	60.3(3)	C(17)-C(13)-C(12)	122.4(6)	C(22)-C(21)-C(26)	118.6(5)
B(10)-B(5)-B(6)	61.5(3)	C(1)-B(5)-B(4)	57.9(3)	C(22)-C(21)-C(2)	119.8(5)	C(26)-C(21)-C(2)	121.6(5)
B(12)-B(5)-B(4)	60.5(3)	C(2)–B(6)–C(1)	78.3(3)				

Table 3 Root-mean-square misfits (Å) between the 12-vertex cores of compound 2 and typical closo and pseudocloso carbaruthenaboranes*

Comparison	r.m.s. misfit	Individual atom misfit											
		C(1)	C(2)	Ru(3)	B(4)	B(5)	B(6)	B(7)	B(8)	B(9)	B(10)	B(11)	B(12)
2/3 2/4	0.135 0.073	0.277 0.115	0.263 0.155	0.155 0.092	0.084 0.035	0.031 0.028	0.168 0.111	0.069 0.025	0.042 0.032	0.018 0.028	0.053 0.032	0.054 0.018	0.020 0.025
3/4	0.204	0.409	0.428	0.255	0.083	0.090	0.247	0.071	0.096	0.039	0.051	0.074	0.043

* Compound **3** is $[1-Ph-3-(mes)-3,1,2-closo-RuC_2B_9H_{10}]^8$ and **4** is $[1,2-Ph_2-3-(cym)-3,1,2-pseudocloso-RuC_2B_9H_9]$.⁵ For a description of the r.m.s. misfit method see ref. 20.

clustered together by type and there is a reasonable linear relationship between the two distances over all three families (correlation coefficient = -0.98). Compound **2** clearly falls outside the three clusters but close to the line; it sits between *closo* and *pseudocloso*, but nearer to the latter.

Previously²⁰ we have demonstrated the utility of the rootmean-square (r.m.s.) misfit method to distinguish between geometrically similar but electronically different borane fragments, and it is instructive to apply such calculations to the present study. In Table 3 are presented the overall r.m.s. misfits and individual atom misfits arising from comparisons of the crystallographically determined {3,1,2-RuC₂B₉} fragments of 2, [1-Ph-3-(mes)-3,1,2-RuC₂B₉H₁₀]⁸ 3 and [1,2-Ph₂-3-(cym)-3,1,2-RuC₂B₉H₉]⁵ **4**, the last two being used as reference *closo* and pseudocloso species respectively. In all comparisons the greatest misfitting atoms are C(1) and C(2), followed by Ru(3) and B(6), showing that these sterically derived distortions are localised to the M(3)C(1)B(6)C(2) diamond/square. Compound 2 fits somewhat better with 4 than with 3, *i.e.* it is geometrically closer to pseudocloso than closo (ca. 65% pseudocloso, 35% closo), supporting the conclusion from Fig. 2. The fact that 2 lies on a direct pathway between 3 and 4 is illustrated by the extent to which the 2/3 and 2/4 r.m.s. misfits sum almost exactly to the 3/4 r.m.s. misfit.

Thus the results of the NMR and crystallographic studies on

compound **2** are entirely consistent: the molecule is distorted by steric crowding into a semipseudocloso shape which appears to lie between closo and pseudocloso, albeit somewhat closer to the latter. These results provide excellent evidence for a continuum of cluster shapes between these forms, the position on which of an individual molecule could, in principle, be controlled by judicious choice of substituent groups. Future contributions will describe attempts to exploit this control, particularly in the fascinating area of sterically induced polyhedral isomerisations.^{21,22}

Acknowledgements

We thank Heriot-Watt University for provision of a studentship (for Rh. Ll. T.), Dr. J. Cowie for useful discussions and the Callery Chemical Company for a generous gift of B10H14.

References

- 1 Part 14, G. M. Rosair, A. J. Welch, A. S. Weller and S. K. Zahn, J. Organomet. Chem., in the press.
- 2 Z. G. Lewis and A. J. Welch, Acta Crystallogr., Sect. C, 1993, 49, 705.
- 3 J. Cowie, D. J. Donohoe, N. L. Douek and A. J. Welch, Acta Crystallogr., Sect. C, 1993, 49, 710.
- 4 Z. G. Lewis and A. J. Welch, J. Organomet. Chem., 1992, 430, C45.

- 5 P. T. Brain, M. Bühl, J. Cowie, Z. G. Lewis and A. J. Welch, *J. Chem. Soc., Dalton Trans.*, 1996, 231.
- 6 U. Grädler, A. S. Weller, A. J. Welch and D. Reed, J. Chem. Soc., Dalton Trans., 1996, 335.
- 7 A. S. Weller and A. J. Welch, *Inorg. Chem.*, 1996, **35**, 4538.
- 8 J. Cowie, B. D. Reid, J. M. S. Watmough and A. J. Welch, J. Organomet. Chem., 1994, **481**, 283.
- 9 D. M. Murphy, D. M. P. Mingos, J. L. Haggitt, H. R. Powell, S. A. Westcott, T. B. Marder, N. J. Taylor and D. R. Kanis, *J. Mater. Chem.*, 1993, **3**, 139.
- 10 M. A. Bennett, T.-N. Huang, T. W. Matheson and A. K. Smith, *Inorg. Synth.*, 1982, 21, 74.
- 11 XSČAŃS, Siemens Analytical Instruments Inc., Madison, WI, 1994.
- 12 XPREP, Siemens Analytical Instruments Inc., Madison, WI, 1994.
- 13 SHELXTL (PC version 5.0), Siemens Analytical Instruments Inc., Madison, WI, 1994.
- 14 W. Clegg, R. Coult, M. A. Fox, W. R. Gill, J. A. H. MacBride and K. Wade, *Polyhedron*, 1993, **12**, 2711.
- 15 M. P. Garcia, M. Green, F. G. A. Stone, R. G. Somerville, A. J. Welch, C. E. Briant, D. N. Cox and D. M. P. Mingos, *J. Chem. Soc., Dalton Trans.*, 1985, 2343.

- 16 X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, J. Plesek, B. Stibr and M. Thornton-Pett, *Acta Crystallogr., Sect. C*, 1990, 46, 995.
- 17 X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, K. Nestor, M. Thornton-Pett, S. Hermanek, T. Jelinek and B. Stibr, J. Chem. Soc., Dalton Trans., 1990, 681.
- 18 M. J. Attfield, J. A. K. Howard, A. N. de M. Jelfs, C. M. Nunn and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2219.
- 19 N. Carr, D. F. Mullica, E. L. Sappenfield and F. G. A. Stone, Organometallics, 1992, 11, 3697.
- 20 S. A. Macgregor, A. J. Wynd, N. Moulden, R. O. Gould, P. Taylor, L. J. Yellowlees and A. J. Welch, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 3317.
- 21 D. R. Baghurst, R. C. B. Copley, H. Fleischer, D. M. P. Mingos, G. O. Kyd, L. J. Yellowlees, A. J. Welch, T. R. Spalding and D. O'Connell, *J. Organomet. Chem.*, 1993, **447**, C14.
- 22 T. D. McGrath and A. J. Welch, J. Chem. Soc., Dalton Trans., 1995, 1755.

Received 10th September 1996; Paper 6/06258J